“Elemen dan cara kerja panel surya”
Energi
surya adalah energi yang didapat dengan mengubah energi panas surya (matahari)
melalui peralatan tertentu menjadi sumber daya dalam bentuk lain. Energi surya
menjadi salah satu sumber pembangkit daya selain air, uap,angin, biogas, batu
bara, dan minyak bumi. Teknik pemanfaatan energi surya mulai muncul pada tahun
1839, ditemukan oleh A.C. Becquerel. Ia menggunakan kristal silikon untuk
mengkonversi radiasi matahari, namun sampai tahun 1955 metode itu belum banyak
dikembangkan. Selama kurun waktu lebih dari satu abad itu, sumber energi yang
banyak digunakan adalah minyak bumi dan batu bara. Upaya pengembangan kembali
cara memanfaatkan energi surya baru muncul lagi pada tahun 1958. Sel silikon
yang dipergunakan untuk mengubah energi surya menjadi sumber daya mulai
diperhitungkan sebagai metode baru, karena dapat digunakan sebagai sumber daya
bagi satelit angkasa luar.
Komponen-komponen Pembangkit Listrik Tenaga Surya
1. Modul Sel Surya (modul photovoltaics)
Sel surya atau sel photovoltaic merupakan suatu alat yang dapat mengubah energi radiasi matahari secara langsung menjadi energi listrik. Pada dasarnya sel tersebut berjenis diode yang tersusun atas P – N junction. Sel surya photovoltaic yang dibuat dari bahan semi konduktor yang diproses sedemikian rupa, yang dapat menghasilkan listrik arus searah (DC). Dalam penggunaannya, sel-sel surya itu dihubungkan satu sama lain, sejajar atau seri, tergantung dari penggunaannya, guna menghasilkan daya dengan kombinasi tegangan dan arus yang dikehendaki.
Sel surya memiliki banyak aplikasi. Mereka terutama cocok untuk digunakan bila tenaga listrik dari grid tidak tersedia, seperti di wilayah terpencil, satelit pengorbit [bumi], kalkulator genggam, pompa air, dan lain-lain. Sel surya (dalam bentuk modul atau panel surya) dapat dipasang di atap gedung di mana mereka berhubungan dengan inverter ke grid listrik dalam sebuah pengaturan net metering.
Sebuah panel surya terbuat dari banyak sel surya. Sel tersambung secara elektrik untuk memberikan arus dan tegangan tertentu. Masing-masing sel di enkapsulasi untuk mengisolasi dan melindungi dari kelembaban dan korosi.
Ada perbedaan tipe modul yang tersedia di pasaran, tergantung pada kebutuhan daya yang dibutuhkan. Modul yang paling umum digunakan terbuat dari 32 atau 36 crystalline silicon sel surya. Sel-sel ini berukuran sama, tersambung secara seri, dan terbungkus diantara bahan kaca dan plastik, menggunakan polymer resin (EVA) sebagai insulator termal (thermal insulator). Bagian muka modul biasanya antara 0,1 dan 0,5 m^2. Panel surya biasanya memiliki dua kontak listrik, satu positif dan satu negatif.
Beberapa panel menyertakan kontak ekstra yang memungkinkan instalasi dioda penyingkat atau bypass diode di antara masing-masing sel. Dioda ini melindungi panel dari gejala yang dikenal sebagai “hot-spots”. Sebuah hot spot terjadi ketika beberapa sel berada dalam bayangan sedangkan sisa panel berada di bawah matahari penuh. Daripada menghasilkan daya, sel yang terteduh bertingkah laku sebagai beban yang membuang daya. Dalam situasi ini, sel yang terteduh dapat mengalami peningkatan suhu yang luar biasa (sekitar 85 sampai 100 derajat Celsius.) Dioda penyingkat akan mencegah hot spot di sel yang terteduh, tetapi mengurangi tegangan maksimum panel. Mereka sebaiknya hanya digunakan kalau peneduhan tak dapat dielakkan. Adalah solusi yang jauh lebih baik untuk menggelar seluruh panel di bawah matahari penuh sebisa mungkin.
Kinerja modul surya yang direpresentasikan oleh kurva karakteristik IV atau IV characteristic curve, yang merepresentasikan arus yang disediakan berdasarkan tegangan yang ditimbulkan oleh tingkat radiasi surya tertentu.
Kurva merepresentasikan semua nilai tegangan-arus yang mungkin. Kurva bergantung pada dua faktor utama: suhu dan radiasi surya yang diterima oleh sel. Untuk sebuah area sel surya, arus yang dihasilkan secara langsung sebanding dengan penyinaran surya (G), sedangkan tegangan berkurang dengan kenaikan suhu. Sebuah pengatur yang baik akan berusaha memaksimalkan jumlah daya yang disediakan oleh panel dengan mengikuti titik yang menyediakan daya maksimum (V x I). Daya maksimum berkaitan dengan lutut kurva IV.
a. Teori Dasar Semikonduktor
Energi radiasi matahari dapat diubah menjadi arus listrik searah dengan menggunakan lapisan-lapisan tipis silikon (Si) murni atau bahan semikonduktor lainnya. Untuk pemakaian sebagai semikonduktor, sislikon harus dimurnikan hingga kurang dari satu atom pengotoran per 1010 atom silicon. Bentuk kristalisasi demikian akan terjadi bilamana silikon cair menjadi padat disebabkan karena tiap atom mempunyai elektron valensi, demikian terjadinya suatu bentuk kristal dimana tiap atom silikon yang bertegangan saling memiliki salah satu elektron valensinya.
Semikonduktor adalah suatu bahan yang dapat berfungsi sebagai konduktor dan juga dapat bersifat sebagai isolator tergantung tempat dan kondisi bahan tersebut. Semikonduktor terdiri dari dua macam yaitu semikonduktor intrinsik dan semikonduktor ektrinsik. Yang dimaksud dengan semikonduktor intrinsik adalah semikonduktor yang murni yaitu semikonduktor yang belum dikotori oleh atom-atom yang lain, seperti atom silikon atau getmanium. Semikonduktor ektrinsik adalah semikonduktor yang telah dicampur atau dikotori dengan atom-atom penghantar yang mempunyai kekurangan elektron disebut atom apsektor, sedangkan atom-atom penghantar yang mempunyai kelebihan elektron disebut atom donor. Perubahan atom-atom penghantar pada bahan semikonduktor disebut doping. Semikonduktor ini terdiri atas dua jenis tipe, yaitu tipe P dan tipe N.
· Semikonduktor Silikon tipe P dan tipe N
Pada kristal silikon murni tidak terdapat elektron bebas, sehingga merupakan konduktor listrik yang buruk. Untuk melepaskan elektron dari ikatannya diperlukan energi yang besar. Untuk membentuk semikonduktor tipe P, maka semikonduktor dengan valensi 4 ditambahkan dengan bahan bervalensi 3, biasanya dikenal dengan bahan ketidakmurnian. Jenis bahan seperti ini antara lain boroen, aluminium, kalsium, indium. Penambahan bahan ketidakmurnian ini akan menjadikan berkurang satu buah dalam ikatan sehingga berbentuk hole/lubang.
Lubang ini dapat berpindah dari suatu tempat ke tempat lain di dalam kristal. Yang terjadi selamanya adalah bahwa elektron-elektron kristal mengisi lubang yang kosong sehingga timbul lubang yang baru. Lubang tersebut berpindah disebabkan karena ada elektron yang mengisinya, maka setiap lubang akan memiliki muatan posistif yang sama dan berlawanan dengan muatan negatif dari elektron.
Demikian juga untuk membentuk semikonduktor silikon tipe N, yaitu ditambah bahan yang bervalensi 5 yang biasa digunakan antara lain fosfor disebut semikonduktor silikon tipe N.
· Junction Semikonduktor
Gabungan antara semikonduktor tipe P dan tipe N menyebabkan perbedaan potensial yang disebut dengan tegangan penghalang dan batas antara kedua sambungan itu disebut junction.
b. Prinsip Kerja Sel Surya
Secara sederhana prinsip kerja solar Sel photovoltaic dapat dijelaskan dengan memisalkan sebagai dioda. Diode ini terdiri dari semikonduktor tipe N dan semikonduktor tipe P. Untuk membentuk semikonduktor silicon tipe N, yaitu ditambahkan bahan yang bervalensi 5 yang biasa digunakan antara lain Foster dan Arenakum.
Sedangkan untuk membentuk semikonduktor tipe P maka semikonduktor dengan valensi 4 ditambah dengan bahan yang bervalensi 3 biasanya dikenal dengan bahan ketidakmurnian. Jenis bahan ini adalah Boron, aluminium, kalsium, dan indium. Penambahan bahan ketidakmurnian ini akan menyebabkan satu bahan electron sehingga berbentuk lubang (hole).
Lubang ini dapat berpindah tempat yang satu ke tempat yang lain di dalam kristal. Yang terjadi adalah electron-elektron Kristal mengisi lubang yang kosong, sehingga timbul lubang baru. Lubang baru tersebut berpindah disebabkan karena ada electron yang mengisinya, maka setiap lubang akan memiliki muatan positif yang sama dan berlawanan dengan muatan negatif electron.
Bila cahaya matahari yang berupa energy foton datang mengenai sisi permukaan lebih besar dari energy ceah atau gap yang memisahkan pita valensi dan pita konduksi, maka elektron-elektron bergerak dari pita valensi ke pita konduksi melalui hubungan (junction) P-N. Lubang yang berada pada sisi tipe N bergerak ke posisi tipe P, dan sebaliknya elektron yang berada pada sisi tipe P bergerak ke sisi tipe N. Jika energy foton yang diterima dan diserap cukup besar, maka lubang akan bertahan di sisi tipe P dan elektron bertahan di sisi tipe N, sehingga mengakibatkan perbedaan tegangan antara kedua sisi tersebut (sisi tipe P dan tipe N). Bila sisi P dan N dihubungkan dengan suatu beban tersebut sehingga dapat diperoleh energi listrik.
Karena cahaya menembus kedua lapisan ini, maka akan berbentuk hole elektron. Medan elektrik yang terdapat pada batas lapisan menghalangi lubang (hole) dan elektron yang berkombinasi kembali, dengan demikian alat ini merupakan suatu alat pembangkit listrik kecil yang energinya diperoleh dari cahaya matahari.
2. Baterai
Baterai adalah alat yang menyimpan daya yang dihasilkan oleh panel surya yang tidak segera digunakan oleh beban. Daya yang disimpan dapat digunakan saat periode radiasi matahari rendah atau pada malam hari. Komponen baterai kadang-kadang dinamakan akumulator (accumulator). Baterai menyimpan listrik dalam bentuk daya kimia. Baterai yang paling biasa digunakan dalam aplikasi surya adalah baterai yang bebas pemeliharaan bertimbal asam (maintenance-free lead-acid batteries), yang juga dinamakan baterai recombinant atau VRLA (klep pengatur asam timbal atau valve regulated lead acid).
Baterai terbentuk oleh sekelompok elemen atau sel yang diletakan secara seri. Baterai timbal-asam terdiri dari dua elektroda timbal yang berada dalam larutan elektrolit air dan asam sulfat. Perbedaan potensial sekitar 2 volt terjadi di antara elektroda, tergantung pada nilai seketika kondisi penyimpanan baterai. Baterai yang paling umum dalam aplikasi surya fotovoltaik mempunyai tegangan nominal sebanyak 12 atau 24 volt. Maka sebuah baterai 12 V berisi 6 sel secara seri.
Baterai memenuhi dua tujuan penting dalam sistem fotovoltaik, yaitu untuk memberikan daya listrik kepada sistem ketika daya tidak disediakan oleh array panel-panel surya, dan untuk menyimpan kelebihan daya yang ditimbulkan oleh panel-panel setiap kali daya itu melebihi beban. Baterai tersebut mengalami proses siklis menyimpan dan mengeluarkan, tergantung pada ada atau tidak adanya sinar matahari. Selama waktu adanya matahari, array panel menghasilkan daya listrik. Daya yang tidak digunakan dengan segera dipergunakan untuk mengisi baterai. Selama waktu tidak adanya matahari, permintaan daya listrik disediakan oleh baterai, yang oleh karena itu akan mengeluarkannya.
Siklus menyimpan dan mengeluarkan ini terjadi setiap kali daya yang dihasilkan oleh panel tidak sama dengan daya yang dibutuhkan untuk mendukung beban. Kalau ada cukup matahari dan bebannya ringan, baterai akan menyimpan daya. Tentunya, baterai akan mengeluarkan daya pada malam hari setiap kali sejumlah daya diperlukan. Baterai juga akan mengeluarkan daya ketika penyinaran tidak cukup untuk menutupi kebutuhan beban (karena variasi alami kondisi keikliman, awan, debu, dan lain-lain)
Jika baterai tidak menyimpan cukup daya untuk memenuhi permintaan selama periode tidak adanya matahari, sistem akan kehabisan daya dan tidak siap memenuhi konsumsi. Di sisi lainnya, memperbesar sistem (dengan menambahkan terlalu banyak panel dan baterai) mahal dan tidak efisien. Ketika mendesain sistem yang mandiri, kita perlu mengkompromikan antara biaya komponen dengan ketersediaan daya dari sistem. Satu cara untuk melakukan ini adalah memperkirakan jumlah hari dimana sistem beroperasi secara mandiri.
Sebaliknya, jika sistem surya bertanggung jawab atas daya yang menyediakan ke peralatan pelanggan anda mungkin dapat mengurangi jumlah hari otonomi sampai dua atau tiga. Di daerah dengan penyinaran yang rendah, nilai ini mungkin perlu ditambah semakin banyak. Dalam kasus apapun, anda harus selalu menemukan keseimbangan yang baik antara biaya dan kehandalan.
Ada dua kondisi istimewa penyimpanan yang dapat terjadi selama siklus penyimpanan dan pengeluaran daya dari baterai. Keduanya sebaiknya dihindari guna memperpanjang umur kegunaan baterai.
· Penyimpanan yang berlebihan (Overcharge)
Penyimpanan yang berlebihan atau overcharge terjadi pada saat baterai berada pada kondisi keterbatasan kapasitasnya. Jika daya yang dimasukan di luar batas titik penyimpanan maksimum, elektrolit mulai hancur. Ini menghasilkan gelembung oksigen dan hidrogen, dalam proses yang diketahui sebagai pembuatan gas atau gasification. Ini berakibat hilangnya air, oksidasi di elektroda positif, dan dalam kasus ekstrim, terjadi bahaya ledakan.
Di sisi lainnya, keberadaan gas menghindari stratifikasi asam. Setelah beberapa siklus penyimpanan dan pengeluaran yang terus menerus, asam cenderung terpusat di bagian bawah baterai, sehingga mengurangi kapasitas efektifnya. Proses gasifikasi menggerakan elektrolit dan menghindari stratifikasi. Sekali lagi, adalah perlu untuk menemukan kompromi antara keuntungan (menghindari stratifikasi elektrolit) dan keadaan merugikan (kehilangan air dan produksi hidrogen). Satu pemecahannya adalah lebih sering membiarkan penyimpanan yang sedikit berlebihan. Satu metode yang umum adalah membiarkan tegangan sebanyak 2,35 sampai 2,4 Volt untuk masing-masing elemen baterai sekali dalam beberapa hari, di suhu 25o C. Regulator sebaiknya menjamin penyimpanan berlebihan yang berkala dan terkontrol.
· Pengeluaran daya yang berlebihan
Dengan cara yang sama dimana ada batas atas, ada juga batas bawah dari kondisi penyimpanan baterai. Mengeluarkan melebihi batas itu akan menimbulkan pengrusakan pada baterai. Ketika persediaan baterai yang efektif habis, pengatur mencegah daya yang tersisa agar tidak diambil dari baterai. Kalau tegangan baterai mencapai batas minimum 1,85 Volt setiap selnya di suhu 25° C, pengatur memutuskan beban dari baterai.
Jika pengeluaran baterai sangat mendalam dan baterai tetap dalam kondisi pengeluaran untuk jangka waktu yang lama, akan terjadi tiga efek: pembentukan sulfat yang terkristal pada pelat baterai, bahan aktif pada pelat baterai akan lepas / berguguran, dan pelat baterai akan melengkung. Proses membentuk kristal sulfat yang stabil dinamakan sulfasi keras. Ini benar-benar tidak baik karena akan membentuk kristal besar yang tidak turut serta dalam reaksi kimia dan dapat membuat baterai anda tidak dapat digunakan.
3. Regulator
Regulator (atau lebih formalnya pengatur penyimpanan daya surya atau Solar power charge regulator) memastikan bahwa baterai berkerja dalam kondisi yang seharusnya. Pengatur ini menghindari penyimpanan (charge) atau pengeluaran (discharge) baterai yang berlebihan, yang keduanya sangat merusak umur baterai. Untuk menjamin charging dan discharging baterai yang baik, pengatur tersebut menjaga informasi kondisi penyimpanan daya (State of Charge atau SoC) baterai. SoC diukur berdasarkan pada tegangan sebenarnya dari baterai. Dengan mengukur tegangan baterai dan diprogram dengan tipe teknologi penyimpanan yang digunakan oleh baterai, pengatur bisa mengetahui titik tepat di mana baterai akan mengalami charge atau discharge yang berlebihan.
Pengatur dapat meliputi fitur lain yang menambahkan informasi berharga dan keamanan kontrol kepada peralatan. Fitur ini termasuk amperemeter, voltmeter, pengukuran ampere-jam, pengatur waktu, alaram, dan lain-lain. Walaupun terkesan nyaman, tidak satupun dari fitur ini diperlukan untuk photovoltaic sistem yang berfungsi.
4. Konverter
Listrik yang disediakan oleh sekumpulan panel dan baterai adalah DC pada tegangan yang tetap. Tegangan yang disediakan mungkin tidak sesuai dengan apa yang diperlukan oleh beban anda. Sebuah konverter DC/AC, yang juga dikenal sebagai inverter, mengubah arus DC dari baterai anda menjadi AC. Ini diikuti dengan kehilangan suatu daya selama konversi. Jika perlu, anda juga dapat menggunakan konverter untuk mendapatkan DC di tingkat tegangan yang berbeda dengan apa yang disediakan oleh baterai. Konverter DC/DC juga kehilangan suatu daya selama konversi. Untuk pelaksanaan optimal, sebaiknya mendesain sistem yang berdaya surya agar sesuai dengan tegangan DC yang dihasilkan agar sesuai dengan beban.
Jumlah daya yang diperlukan untuk peralatan AC dihitung dengan memasukkan semua loss yang disebabkan oleh konverter DC/AC atau inverter DC/AC. Ketika memilih inverter, selalu ingat bahwa kinerja inverter bervariasi berdasarkan banyaknya daya yang dibutuhkan. Sebuah inverter mempunyai karakteristik kinerja yang lebih baik ketika beroperasi dekat kemampuan dayanya. Menggunakan inverter 1500 Watt untuk menghidupkan beban 25 Watt sangatlah tidak efisien. Untuk menghindari daya yang terbuang ini, sangatlah penting untuk menganggap bukan daya tertinggi seluruh peralatan anda, tetapi puncak daya peralatan yang diharapkan untuk beroperasi secara bersamaan.
5. Beban (Load)
Beban adalah peralatan yang mengkonsumsi daya yang dihasilkan oleh sistem daya anda. Beban mungkin termasuk peralatan komunikasi nirkabel, lampu jalan, lampu penerangan rumah atau gedung, TV, radio, dan lain-lain. Walaupun tidak mungkin secara persis memperhitungkan jumlah persis konsumsi peralatan, sangat penting untuk membuat perkiraan yang baik. Dalam sistem sejenis ini, sangatlah penting untuk mempergunakan peralatan yang efisien dan berdaya rendah untuk menghindari daya yang terbuang.
mantap
BalasHapuscoba aja kalo semua mahasiswa indonesia,bisa mempraktekan ilmu yang mereka pelajari,, bumi ini pasti indah dgn menggunkan kekuatan alam,, ah teori,,
BalasHapusJika anda membutuhkan konversi tenaga surya pada kebutuhan listrik rumah tangga anda, kami menyediakan aneka pilihan paket Solar Home System mulai 50 Watt hingga 5000 Watt. Hubungi kami via WA di 0858 7997 8991 e-mail : gudanglampusurya@gmail.com web : www.gudanglampusurya.com
BalasHapusTutorial Konversi Energi Listrik Tenaga Matahari?
http://gudangpanelsurya.blogspot.co.id/
Kami menyediakan panel surya termurah di Indonesia mulai 12.000 per WP